

N-Sensor[®] based variable rate nitrogen fertilization

Joerg Jasper

Research Centre Hanninghof Yara International ASA Duelmen, Germany

Heterogeneous fields are the rule – variable rate N fertilization is a logical consequence

N-Sensor®

- Plant nutrition know-how & sophisticated hardware
 - Development based on an agronomic concept for site-specific plant nutrition
 - Powerful sensor hardware
 - Greater distance from sensor to crop, oblique view, large footprint
 - Optimized vegetation indices for reliable N status discrimination in dense crop stands
 - Crop and growth stage specific fertilization algorithms (developed in field trials)

Light reflectance from crop canopies gives information on the crop's N nutrition status

→ N status of crops can be measured by analysing spectral reflectance data

N-Sensor[®] detects areas of different N supply and adjusts N fertilizer rates accordingly

Winter Barley, N-Sensor measurement and N application on the 25th of May 1999 Source: AgriCon, Germany

N-Sensor[®] based variable rate N fertilization increases N use efficiency

Yields and N rates of variable rate N treatments (N-Sensor calibrated with N-Tester) as compared to uniform N treatments fertilized according to farm practice

Effects of N-Sensor[®] based variable rate N application (field trials, on-farm research)

Crop sensors provide "colourful maps" with limited information

- Crop sensors generate dimensionless readings
 - Optical sensors: spectral indices (vegetation indices) related to the chlorophyll amount in the crop canopy
- The relationship between the sensor reading and the measured plant parameter is not quantified
 - Neither absolute values for the plant parameter nor quantitative differences of that plant property within the field can be derived from the measurement
- Sensor maps show qualitative differences of plant parameters within a field
 - more less equal

Converting a "colourful map" into a fertilizer recommendation

- Which plant parameter to be measured?
 - Which is the most suitable crop property to be used?

• Calibration of the sensor reading?

- Relationship sensor reading/crop parameter \rightarrow sensor value
- Impact of crop species, cultivar, growth stage

• Fertilization algorithms (decision rules)?

- Relationship sensor value/optimum N rate

Which plant parameter to be measured? Which is the most suitable crop property to be used for the derivation of site-specific N fertilizer recommendations?

Foto: www.luftbild-auto.de

Which is the most suitable crop property for the derivation of site-specific N recommendations?

Differentiated crop stands

Seed density

60 seeds/m²

Relationship between crop biomass and optimum N fertilizer rate (3. N dressing)

 Measurement of crop biomass does not take differences of N content into account. The suitability of crop biomass measurements for the derivation of optimum sitespecific N rates is therefore limited (r² = 0,35).

Relationship between crop N uptake and optimum N fertilizer rate (3. N dressing)

- Measurement of crop N uptake is most suitable for the derivation of optimum site-specific N rates (r² = 0,80). Crop density (biomass) is considered as well as the N content of the cropt.
- Variable rate N fertilization should be based on accurate measurements of N uptake

Agronomic calibration of the sensor reading

Relationship sensor reading/crop parameter \rightarrow sensor value

Foto: www.luftbild-auto.de

Calibration trial winter barley 2009

Calibration trial winter barley 2009

Sensor measurements and plant sampling

N-Sensor reading calibrated for N uptake

....

Fertilization algorithms

Decision rules for variable rate N application

Foto: www.luftbild-auto.de

Research Centre Hanninghof - JJa - 2011-11-03

Measurement of N uptake is the basis for the agronomic calibration of the N-Sensor

Measurement of N uptake is the basis for the agronomic calibration of the N-Sensor

N-Sensor value

N-Sensor fertilization algorithms are available for:

Corn

Potato

Winter wheat Winter barley Winter rye Triticale Spring barley Oat

Winter oilseed rape

Fertilization algorithms for winter cereals

Variable rate N fertilization

Calibration and decision rules are determining the success

Foto: www.luftbild-auto.de

Research Centre Hanninghof - JJa - 2011-11-03

Multiple N response trials along a tramline - site-specific N production functions

N response trial along a tramline Winter wheat 2003/2004

N response trial along a tramline Winter wheat 2003/2004

The agronomic concept determines the success Optimum VRN compared to uniform N (120 kg N/ha)

Optimum

The agronomic concept determines the success N-Sensor compared to uniform N (120 kg N/ha)

replication No.

Optimum N-Sensor

The agronomic concept determines the success N-Sensor compared to uniform N (120 kg N/ha)

replication No.

Optimum N-Sensor King John (120N)

Summary

- Variable rate N fertilization is an agronomic concept.
- In order to make the concept work in farm practice, accurate and reliable crop canopy sensors are needed.
- Readings of such sensors need to be calibrated in field trials in order to get meaningful information about the crop, i.e. from an agronomic point of view.
- The economic success of variable rate N fertilization depends on the decision rules applied to derive site-specific N recommendations from the measured differences of crop properties.
- The N-Sensor is the only system for variable rate N fertilization that combines high performance sensor technology with site-specific fertilization algorithms that have been developed and verified in field trials.

